Science - proposes that the Earth is 4.6 Billion yrs old Religion - proposes that Earth is only about 6000 yrs old (Formed in the year 4004 B.C on October 24 at 9:00am)

Rocks: Materials of the Lithosphere

Rock Cycle

Igneous Sedimentary Metamorphic

- A. Shows the relations among the three rock types
 Uniformitarianism "The present is the key to the past."
- B. Proposed by James Hutton in the late 1700s
 Catastrophism Big, sudden events / changes
- C. The rock cycle is diagramed below:

Any Rock can become any other rock or it can become itself

- II. Igneous rocks Parent rock of all other rock types
 - A. Form as magma cools and crystallizes
 - 1. Rocks formed inside Earth are called plutonic or intrusive rocks
 - Rocks formed on the surface
 - a. Formed from lava (a material similar to magma, but without gas)
 - b. Called volcanic or extrusive rocks

Magma - molten rock under the Earth's surface Lava - molten rock on the Earth's surface

The more accurate difference between these types of molten rock is the percentage of dissolved gases found within.

Crystallization of magma B.

- Ions are arranged into orderly patterns
- Crystal size of the rock is determined by the rate of cooling
 - Slow rate forms large crystals

 - Fast rate forms microscopic crystals

 Very fast rate forms glass

 No crystals
- Classification is based on the rock's texture and mineral composition C.
 - Texture how the mineral crystals LOOK
 - Size and arrangement of crystals
 - b. Types
 - Fine-grained—fast rate of cooling small crystals 1.
 - Coarse-grained—slow rate of cooling large crystals 2.
 - Porphyritic (two crystal sizes two rates of cooling)
 - 4. Glassy—very fast rate of cooling no crystals

Mineral composition

- Explained by Bowen's reaction series which shows the order of mineral crystallization
- b. Influenced by crystal settling in the magma

D. Naming igneous rocks

- Basaltic rocks (Mafic)
 - **a.** Derived from first minerals that cool and crystallize
 - **b.** Rich in Fe (iron) and Mg (magnesium)
 - c. Low in silica
 - d Common rock is Basalt (Diabase)
- 2. Granitic rocks (Felsic)
 - a. Formed from the last minerals to cool and crystallize
 - **b.** Mainly Feldspar and Quartz (no Fe or Mg)
 - c. High in silica
 - d. Common rock is Granite

Keys for Igneous Rock Identification:

Mineral Texture: size of the mineral crystals

Coarse / Phaneritic - Large visible

Fine / Aphanitic - small / microscopic

Glassy - no crystals

Cooling time

Mineral composition: minerals that a rock contains

Mafic - rich in iron / magnesium (Dark / black)
Felsic - no iron or magnesium (Light / white)

III. Sedimentary rocks

- A. Form from sediment (weathered products)
- B. Form about 75 percent of the rock outcrops on the continents
- C. Used to construct much of Earth's history
 - 1. Clues to past environments Water, wind, ice, gravity
 - 2. Provide information about sediment transport
 - Rocks often contain fossils
- D. Economic importance
 - 1. Coal raw materials for cement
 - Petroleum and natural gas
 - 3. Sources of iron and aluminum
- E. Classification
 - 1. Two groups based on the source of the material
 - Detrital rocks rock is composed of pieces of other rocks

Clastic

- 1. Material is solid particles
- 2. Classified by particle size
- Common rocks are
 - a. Shale (most abundant)
 - b. Sandstone
 - c. Conglomerate
 - d. Siltstone

COMMON	<u>PARTICLE</u>	SIZE	
SEDIMENT NAME	<u>NAME</u>	RANGE (MM)	DETRITAL ROCK
	Boulder	>256	
GRAVEL	Cobble		unded CONGLOMERATE
	Pebble	4 - 64	ngular OR BRECCIA
	Granular	2 - 4	
SAND	Medium sand	.175 - 2	SANDSTONE
MUD	Silt Clav	0.004175 <.004	SHALE

environmental change: temperature / chemical Chemical rocks evaporation

- Derived from material that was once in solution and precipitates to form sediment
 - Directly precipitated or
 - b. Through life processes (biochemical origin)
- 2. Common rocks are
 - Limestone—the most abundant chemical rock
 - b. Travertine mineral salt: Mammoth Hot Springs
 - Microcrystalline quartz c.
 - Chert 1.
 - 2. Flint
 - 3. Jasper
 - 4. Agate
 - d. Evaporites
 - Rock salt Great Salt Flats, Utah 1.
 - 2. Gypsum White Sands, New Mexico
 - Coal
 - Lignite

organic remains plants

Bituminous

100s of millions of yrs old

F. Produced through lithification

Peat - -> Lignite - -> Bituminous - -> Pressure and time

- diments are transformed into solid rock
- Lithification processes
 - Compaction
 - b. Cementation by the materials
 - Calcite

Sedimentary rock is only as strong as the cement that

2. Silica Iron oxide

holds it together.

- G. Features
 - 1. Strata, or beds (most characteristic)
 - 2. Bedding planes separate strata

Strata - rock layers

Bedding Planes

3. Fossils

- a. Traces or remains of prehistoric life
- b. Are the most important inclusions
- c. Help determine past environments
- d. Used as time indicators
- e. Used for matching rocks from different places

IV. Metamorphic rocks

- A. "Changed form' rocks
- B. Can form from
 - Igneous rocks
 - 2. Sedimentary rocks
 - 3. Other metamorphic rocks
- C. Degrees of metamorphism
 - 1. Show in the rock's texture and mineralogy
 - 2. Types
 - a. Low grade shale turning into slate
 - b. High grade causes the original features to be completely destroyed (Limestone Marble) (Granite Gneiss)

D. Metamorphic settings

- 1. Regional metamorphism
 - a. Over extensive areas (large scale) Mountain building
 - b. Produces large quantities of metamorphic rock
 High grade metamorphic rock
 - Contact metamorphism
 - a Near a mass of molten rock
 - b. Bakes the surrounding rock (smaller volumes of metamorphic rock)

 Low grade metamorphic rock

Mineral Growth under Stress

E. Metamorphic agents

- 1. Heat
- Pressure
 - a. From burial
 - b. From stress
 - Chemically active fluids
 - a. Water (most common fluid)
 - b. Ion exchange among minerals

F. Textures

- Foliated
 - a. Minerals are in a parallel alignment
 - b. Minerals are perpendicular to the force
- 2. Nonfoliated
 - a. Contain equidimensional crystals
 - b. Resembles a coarse igneous rock

G. Classification

- 1. Based on texture
- 2. Two groups
 - a. Foliated rocks

 1. Slate

 Comes from Shale

 a. Fine-grained
 b. Splits easily

 2. Schist

 a. Strongly foliated
 b. "Platy"
 c. Types based on composition (e.g.,
 - Gneiss
 - a. Strong segregation of silicate minerals
 - b. "Banded" texture

mica schist)

- - Calcite crystals b.
 - Used as a building stone c.
 - Variety of colors d.
 - Quartzite 2.
 - Parent rock—quartz sandstone a.
 - Quartz grains are fused b.
- V. Resources from rocks and minerals
 - Metallic mineral resources
 - 1. e.g., Gold, silver, copper
 - 2. Produced by
 - Igneous processes
 - Metamorphic processes
 - Hydrothermal (hot-water) solutions 3.

Black Smokers

- a.
- b. Contain metal-rich fluids
- c. Associated with cooling magma bodies
- d. Types
 - Vein deposits occur in fractures or bedding planes 1.
 - Disseminated deposits are distributed throughout 2. the rock
- Nonmetallic mineral resources
 - 1. Make use of the materials
 - Nonmetallic elements
 - Physical or chemical properties b.
 - 2. Two broad groups
 - Building materials (e.g., limestone, gypsum)
 - b. Industrial minerals (e.g., fluorite, corundum, sylvite)