Name_

-

Geometry

Polygons

Sum of the interior angles of a polygon	(n-2)180
Sum of the exterior angles of a polygon	360°
Each interior angle of a regular polygon	$\frac{(n-2)180}{n}$
Each exterior angle of a regular polygon	$\frac{360}{n}$

Geometry

	NAME:	
Polygon Angle Measures	PERIOD:	DATE:

WORKSHEET: Polygon Angle Measures

Use the given information to complete the table. Round to the nearest tenth if necessary.

	# Sides	Interior Angle Sum	Measure of ONE INTERIOR Angle (Regular Polygon)	Exterior Angle Sum	Measure of ONE EXTERIOR Angle (Regular Polygon)
1)	n				
2)	14				
3)	24				
4)	17				
5)		1080°			
6)		900°			
7)		5040°			
8)		1620°			
9)			150°		
10)			120°		
11)			156°		
12)					10°
13)					7.2°
14)					90°
15)					5°

2.

Geometry	NAME:	
WORKSHEET: Angles of Polygons – Review	PERIOD:	DATE:

USING THE INTERIOR & EXTERIOR ANGLE SUM THEOREMS

- 1) The measure of one exterior angle of a regular polygon is given. Find the number of sides for each.
 - a) 72° b) 40°
- 2) Find the measure of an interior and an exterior angle of a regular 46-gon.

- 3) The measure of an exterior angle of a regular polygon is 2x, and the measure of an interior angle is 4x.a) Use the relationship between interior and exterior angles to find x.
 - b) Find the measure of one interior and exterior angle.
 - c) Find the number of sides in the polygon and the type of polygon.
- 4) The measure of one interior angle of a regular polygon is 144°. How many sides does it have?
- 5) Five angles of a hexagon have measures 100°, 110°, 120°, 130°, and 140°. What is the measure of the sixth angle?

7) ABCDE and HIJKL are regular pentagons and AEFGHL is a regular hexagon. If $\angle ABK \cong \angle LKB$, find $m \angle ABK$.

Geometry	NAME:	*****	
WORKSHEET: Polygons & Interior Angles	PERIOD:	DATE:	<u>.</u>

USING THE INTERIOR ANGLE SUM THEOREM

Since a hexagon has six (6) sides, we can find the sum of all six interior angles by using n = 6 and:

 $Sum = (n-2) \cdot 180^{\circ}$ $= (6-2) \cdot 180^{\circ}$ $= (4) \cdot 180^{\circ}$ $Hexagon Sum = 720^{\circ}$

All regular polygons are equiangular, therefore, we can find the measure of *each* interior angle by:

Note: The previous information could also be used to find the number of sides for a *regular* polygon given the measure of one interior angle.

Example: How many sides does a regular polygon have if one interior angle measures 157.5°?

From above:

$$157.5 = \frac{(n-2)\cdot 180}{n}$$
 OR $157.5n = (n-2)\cdot 180$

What is the value of *n*?

PRACTICE... Show all work required to complete each of the following.

- 1) What is another name for a regular quadrilateral?
- 2) Find the sum of the measures of the interior angles of a convex heptagon.
- 3) What is the measure of each interior angle of a regular pentagon?

- 4) The sum of the interior angles of a polygon is 1620°. How many sides does it have?
- 5) Can the interior angles of a polygon have a sum between 4300° and 4400°? If so, how many sides can it have?
- 6) The measure of the interior angle of a regular polygon is 179°. How many sides does it have?
- 7) Is it possible for a regular polygon to have each of its interior angles measure 142°? Support your answer.
- 8) Find the value of x in the figure given.

Name_

Geometry

Sketch each:

2. Convex septagon 1. Concave pentagon 4. Concave equilateral quadrilateral 3. Concave octagon 6. Convex regular decagon 5. Convex equiangular hexagon

Classify each diagram:

- Star

.

Name the Polygon two different ways. Remember – this doesn't mean classify!!

and the second second

Matching:	
16dodecagon	A. 3
17triangle	B. 4
18pentagon	<i>C.</i> 5
19nonagon	D. 6
20quadrilateral	E. 7
21hexagon	F. 8
22octagon	G. 9
23heptagon	Н. 10
24decagon	I. 12

28. Explain why the given figure is not a polygon. Your answer must be in complete sentences.

29. Explain in complete sentences what it means if a polygon is regular. Sketch an example.

.

Geometry	Name
	Date
Find the SUM of the inte	erior angles of each polygon.
a. octagon	
b. pentagon	
c. hexagon	i
d. heptagon	
Find the SUM of the ex	terior angles of each polygon.
a. octagon	
b. pentagon	
What is the measure of	EACH interior angle of a regular:
a. octagon	
b. pentagor	
c. hexagon	
d. decagon	
What is the measure o	f EACH exterior angle of a regular:
a. octagon	
b. pentagor	
c. hexagon	
d. decagon	

ż

.

,

Find the measure of $\angle 1$ in each figure.

X =

For questions 1 - 4, classify each polygon. Be as specific as possible.

31. Sketch the following:

a) convex equilateral pentagon

b) concave octagon

c) regular quadrilateral

	Interior	Exterior
Sum	(n-2) 180	360°
Each for Regular	<u>(n-2) ·180</u> n	<u> 360 </u> n

*3*2. Find the sum of the interior angles of each convex polygon.

a) nonagon b) 50-gon _____ **3**3. Find the measure of each interior angle of a regular hexagon. _____

- **3**4. Find the measure of each exterior angle of a regular decagon.
- **3**5. The measure of each exterior angle in a regular polygon is 24°. How many sides does the polygon have?

36. Two interior angles of a pentagon measure 80° and 100°. The other three angles are congruent. Find the measure of each of the three angles.

Name_

Geometry

.

Find the value for each variable.

85°

NAME X = $m \leq R =$ (2x-50)0 (x+40) $m \leq S =$ (150° Q 300)T m < u = $m \angle V =$ ×° X Name the figure (X+16) (++35) (++2)) T $\chi = .$ $(x+z)^{\circ}$ $(x+25)^{\circ}$ A ((++29)° (++30)° m < A = ____ mZB= E mLC . mZD ____ G MLE ____ mZF _____ m ZG

