

Use the figure above to find each length.

1. <i>EG</i>	2. <i>EF</i>	3. FH

On \overline{PR} , Q is between P and R. If PR = 16, we can find QR. PQ + QR = PR9 + x = 16*x* = 7 QR = 7

Find ST. _____

Measuring and Constructing Segments continued

Segments are **congruent** if their lengths are equal.

AB = BC

Reteach

The length of \overline{AB} equals the length of \overline{BC} .

 $\overline{AB} \cong \overline{BC}$ \overline{AB} is congruent to \overline{BC} .

0			
Copying a Segment			
Method	Steps		
sketch using estimation	Estimate the length of the segment. Sketch a segment that is about the same length.		
draw with a ruler	Use a ruler to measure the length of the segment. Use the ruler to draw a segment having the same length.		
construct with a compass and straightedge	Draw a line and mark a point on it. Open the compass to the length of the original segment. Mark off a segment on your line at the same length.		

Refer to triangle ABC above for Exercises 10 and 11.

- 10. Sketch \overline{LM} that is congruent to \overline{AC} . 11. Use a ruler to draw \overline{XY} that is congruent

to \overline{BC} .

12. Use a compass to construct \overline{ST} that is congruent to \overline{JK} .

The **midpoint** of a segment separates the segment into two congruent segments. In the figure, *P* is the midpoint of *NQ*.

$$\begin{array}{c|c} 3x & 2x+4 \\ \hline N & P & Q \end{array}$$

13. \overline{PQ} is congruent to _____.

- 14. What is the value of x? _____
- 15. Find NP, PQ, and NQ.

Reteach

1.	4 cm	2.	1.5 cm
3.	3 cm	4.	2
5.	6	6.	41
7.	21	8.	135
9.	22	10.	L M
11.	X Y	12.	S T
13.	\overline{NP} or \overline{PN} .	14.	4

15. 12, 12, 24

Challenge

1. Possible drawing:

- 2. Check students' work.
- 3. The centroid is $\frac{2}{3}$ of the distance from each vertex to the midpoint of the opposite side.
- 4. EN = 2 cm, EX = 3 cm, $\frac{2}{3}$ of 3 cm is 2

cm, therefore
$$EN = \frac{1}{3}EX$$
; $FN = 2$ cm,
 $FY = 3$ cm, therefore $FN = \frac{2}{3}FY$; $GN = \frac{1}{3}EY$; $FN = \frac{1}{3}EY$; $GN = \frac{1}{3}EY$; $FN = \frac{1}{3}EY$

cm,
$$GW = 3$$
 cm, therefore $GN = \frac{2}{3}GW$

Problem Solving

- 1. $24\frac{3}{4}$ ft 2. 23 ft
- 3. 18 ft
- 4. 9.7 cm and 38.8 cm
- 5. B 6. F
- 7. D

Reading Strategies

- 1. $\overline{AB}, \overline{CD}; \overline{BC}, \overline{AD}; \overline{AC}, \overline{BD}; \overline{DE}, \overline{BE}, \overline{CE}, \text{ and } \overline{AE}$
- 2. Point *E* 3. \overline{AD}

- 4. $\overline{XY} \cong \overline{XZ}; \overline{ZP} \cong \overline{PY}$ 5. Point P
- 6. XP

LESSON 1-3

Practice A

- 2. $\angle A$, $\angle C$, $\angle ABC$, $\angle ABD$, $\angle ADB$, $\angle ADC$, $\angle CBD$, and $\angle CDB$
- 3. 90°; right 4. 120°; obtuse
- 5. 30°; acute 6. 14°
- 7. 123° 8. 44°
- 9. 3°15′05″ 10. 79.958°

Practice C

- 1. ∠*BAE*
- 2. $\angle BAC$, $\angle DAE$, $\angle CAD$
- 3. $\angle BAD$ and $\angle CAE$
- 4. a straight angle
- First, Keisha can draw a straight angle (180°). She can then bisect the straight angle to make two right angles (90°). Keisha can then bisect one of the right angles to make a 45° angle.
- 6.

2

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.