LESSON 1-5

Reteach

Using Formulas in Geometry

The **perimeter** of a figure is the sum of the lengths of the sides.

The **area** is the number of square units enclosed by the figure.

Figure	Rectangle	Square
Model	€ w w	
Perimeter	$P = 2\ell + 2w \text{ or } 2(\ell + w)$	P = 4s
Area	$A = \ell w$	$A = s^2$

Find the perimeter and area of each figure.

- 1. rectangle with $\ell = 4$ ft, w = 1 ft
- 2. square with s = 8 mm

The perimeter of a triangle is the sum of its side lengths.

The base and height are used to find the area.

Perimeter

$$P = a + b + c$$

$$P = a + b + c$$
 $A = \frac{1}{2}bh \text{ or } \frac{bh}{2}$

Find the perimeter and area of each triangle.

5.

6.

1-5

LESSON Reteach

Using Formulas in Geometry continued

Circles		
	Circumference	Area
Models	distance around the circle	space inside the circle
Words	pi times the diameter or 2 times pi times the radius	pi times the square of the radius
Formulas	$C = \pi d$ or $C = 2\pi r$	$A = \pi r^2$

$$C = 2\pi r$$

$$A=\pi r^2$$

$$C = 2\pi(4)$$

$$C = 2\pi r$$
 $A = \pi r^2$ $C = 2\pi (4)$ $A = \pi (4)^2$ $C = 8\pi$ $A = 16\pi$

$$C = 8\pi$$

$$A = 16\pi$$

$$A \approx 50.3 \text{ m}^2$$

Find the circumference and area of each circle. Use the π key on your calculator. Round to the nearest tenth.

- 7. circle with a radius of 11 inches
- 8. circle with a diameter of 15 millimeters

9.

10.

11.

12.

- 12. 12.5 mm
- 13. 7.5 ft
- 14 42 ft²

Practice C

- 1. 4 units
- 2. 2 units
- 3. Area is measured in square units, and perimeter is measured in linear units.
- 4. $A = 121 \text{ ft}^2$; $\ell = 11 \text{ ft}$; w = 11 ft
- 5. For a given perimeter, a rectangle with sides of equal length (a square) encloses the maximum area.
- 6. about 154 ft²
- 7. about 33 ft²
- 8. If a rectangle and a circle have the same perimeter, then the circle has the greater area.
- 9. 197.5 in²
- 10. a = 8

Reteach

- 1. 10 ft; 4 ft²
- 2. 32 mm; 64 mm²
- 3. 28 cm; 49 cm²
- 4. (24 + 2x) in.; 12x in²
- 5. (18 + y) ft; 4y ft²
- 6. 24.2 cm; 27 cm²
- 7. 69.1 in.; 380.1 in²
- 8. 47.1 mm; 176.7 mm²
- 9. 56.5 in.; 254.5 in²
- 10. 9.4 cm; 7.1 cm²
- 11. 81.7 m; 530.9 m²
- 12. 103.7 mm; 855.3 mm²

Challenge

- 1. P = 11 cm; $A = 8.25 \text{ cm}^2$
- 2. The perimeter will double. The area will be 4 times greater.
- 3. The area will be 9 times greater. k^2A
- 4. 249.6 m²
- 5. 11.2 cm²
- 6. 1.7 in²
- 7. 45.1 mm²

Problem Solving

- 1. 320 yd
- 2. 6000 yd²
- 3. about 401.92 yd²
- 4. 3000 yd²

5. A

6. G

Reading Strategies

- 1. Answers will vary. Students should indicate that the perimeter of the square is the sum of the lengths of the sides.
- 2. Answers will vary. Students should point out that the perimeter of any object is the sum of the lengths of all the sides.
- 3. Area = length \times width or Area = length of one side \times 4
- 4. Area = length \times width; Area = 2 \times 2; Area = 4 square units

LESSON 1-6

Practice A

- 1. x-axis; y-axis
- 2. coordinates
- $3. \left(1\frac{1}{2}, 0\right)$
- 4. (0, -1)
- 5. $\left(1\frac{1}{2}, -1\right)$

- 7. (-2, 4)
- 8. (-1, -3)
- 9. 3 miles
- 10. 4 miles
- 11. 1 mile

Practice B

- 1. (3, -3)
- $2. \left(\frac{x}{2}, \frac{y-3}{2}\right)$
- 3. (-4, -2)
- 4. $\sqrt{26}$ units
- 5. $\sqrt{26}$ units
- 6. $4\sqrt{2}$ units
- 7. \overline{AB} and \overline{BC}
- 8. 6.4 units
- 9. 11.4 units
- 10. 13.4 ft
- 11. 101.8 in.

Practice C

1.

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

since $(x_1^2 - 2x_1x_2 + x_2^2) + (y_1^2 - 2y_1y_2 + y_2^2)$

$$= (x_2^2 - 2x_1x_2 + x_1^2) + (y_2^2 - 2y_1y_2 + y_1^2)$$

A6