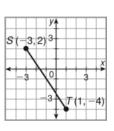

Name


1.

2.

Find the coordinates of the midpoint of each segment.

	у л 6-	
Å	(-2,5)	B (4, 5)
≺ −3	0	×

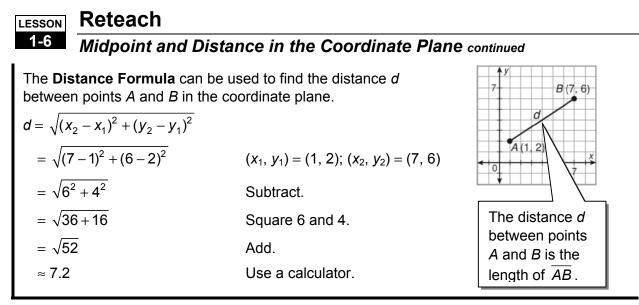
- 3. \overline{QR} with endpoints Q(0, 5) and R(6, 7) _____
- 4. \overline{JK} with endpoints J(1, -4) and K(9, 3)

Suppose M(3, -1) is the midpoint of \overline{CD} and C has coordinates (1, 4). You can use the Midpoint Formula to find the coordinates of D.

$$M(3,-1) = M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

x-coordinate of D

y-coordinate of D


 $3 = \frac{x_1 + x_2}{2}$ Set the coordinates equal. $-1 = \frac{y_1 + y_2}{2}$ $3 = \frac{1 + x_2}{2}$ Replace (x_1, y_1) with (1, 4). $-1 = \frac{4 + y_2}{2}$ $6 = 1 + x_2$ Multiply both sides by 2. $-2 = 4 + y_2$ $5 = x_2$ Subtract to solve for x_2 and y_2 . $-6 = y_2$

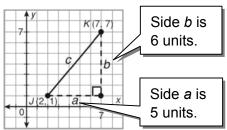
The coordinates of D are (5, -6).

- 5. M(-3, 2) is the midpoint of \overline{RS} , and R has coordinates (6, 0). What are the coordinates of *S*?
- 6. M(7, 1) is the midpoint of \overline{WX} , and X has coordinates (-1, 5). What are the coordinates of W?

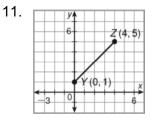
Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

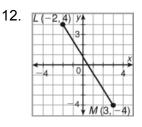
Name

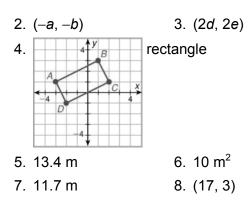
Use the Distance Formula to find the length of each segment or the distance between each pair of points. Round to the nearest tenth.


- 7. \overline{QR} with endpoints Q(2, 4) and R(-3, 9) 8. \overline{EF} with endpoints E(-8, 1) and F(1, 1)

9. T(8, -3) and U(5, 5)


10. *N*(4, -2) and *P*(-7, 1)


You can also use the Pythagorean Theorem to find distances in the coordinate plane. Find the distance between J and K.


$\boldsymbol{c}^2 = \boldsymbol{a}^2 + \boldsymbol{b}^2$	Pythagorean Theorem		
$=5^{2}+6^{2}$	a = 5 units and $b = 6$ units		
= 25 + 36	Square 5 and 6.		
= 61	Add.		
$c = \sqrt{61}$ or about 7.8	Take the square root.		

Use the Pythagorean Theorem to find the distance, to the nearest tenth, between each pair of points.

Reteach

1. (1, 5)	2. (-1, -1)
3. (3, 6)	4. (5, -0.5)
5. (-12, 4)	6. (15, -3)
7. 7.1 units	8. 9 units
9. 8.5 units	10. 11.4 units
11. 5.7 units	12. 9.4 units

Challenge

- 1. 29.6 units
- 2. (-3, 2.5), (1.5, -0.5), (-0.5, 5)
- 3. 14.8 units
- 4. The perimeter of $\triangle ABC$ is twice the perimeter of the second triangle.
- 5. 12.2; 16.1 units
- 6. Both midpoints are at (1, 1). This is the point where the diagonals intersect.
- 7. (1, 19)
- 8. 78.7 units: 493.2 units²
- 9. The diameter of the circle is approximately 25.1 units, so the radius is half that distance, or about 12.55 units. The distance from the center of the circle to G is 18 units. So G is not a point on the circle.

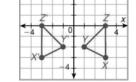
Problem Solving

1. 82.5 ft	2. 85.9 ft
3. 47.4 m	4. 18.4 m

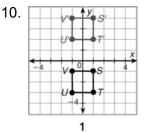
- 5. B
- 6. H 7. C

Reading Strategies

1. (2, 2); (-1, -2)


2.
$$d = \sqrt{(2 - (-1))^2 + (2 - (-2))^2}$$

 $= \sqrt{(3)^2 + (4)^2}$
 $= \sqrt{9 + 16}$
 $= \sqrt{25}$
 $= 5$
4. $a = 4, b = 3$
 $c^2 = 4^2 + 3^2$
 $= 16 + 9$
 $= 25$
 $c = \sqrt{25}$
 $= 5$


5. Sample answer: The Distance Formula uses a coordinate plane. The Pythagorean Theorem uses known measures of two sides of a triangle.

LESSON 1-7

Practice A

- 1. transformation
 - 2. original; image
- 3. reflection 4. slide
- 5. rotation
- 6. 2; $ABCD \rightarrow A'B'C'D'$
- 7. 3; $\triangle PQR \rightarrow \triangle P'Q'R'$
- 8. 1; $\triangle HIJ \rightarrow \triangle H'I'J'$
- 9. reflection

Practice B

1.	2	2.	1
3.	3	4.	rotation

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.