Date

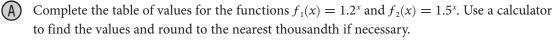
Name

15.5 Transforming Exponential **Functions**

Essential Question: How does the graph of $f(x) = ab^x$ change when a and b are changed?

Changing the Value of *b* in $f(x) = b^x$ Explore

Investigate the effect of *b* on the function $f(x) = b^x$.



X	$f_1(x) = 1.2^x$	$f_2(x) = 1.5^x$
-2	0.694	
-1		0.667
0		
1	1.2	1.5
2		

(B) Select the option that makes the statement true.

 $(f_1(x)/f_2(x))$ increases more quickly as x increases.

 $(f_1(x)/f_2(x))$ approaches 0 more quickly as *x* decreases.

The *y*-intercept of $f_1(x)$ is (C)

. The *y*-intercept of $f_2(x)$ is

(D)Fill in the table of values for the functions $f_3(x) = 0.6^x$ and $f_4(x) = 0.9^x$. Round to the nearest thousandth again.

X	$f_3(x) = 0.6^x$	$f_4(x) = 0.9^x$
-2	2.778	
-1		1.111
0		
1	0.6	0.9
2		

(E) $(f_3(x)/f_4(x))$ increases more quickly as x decreases.

 $(f_3(x)/f_4(x))$ approaches 0 more quickly as x increases.

The *y*-intercept of $f_3(x)$ is . The *y*-intercept of $f_4(x)$ is

Reflect

1. Consider the function, $y = 1.3^x$. How will its graph compare with the graphs of $f_1(x)$ and $f_2(x)$? Discuss end behavior and the *y*-intercept.

S Explain 1 Changing the Value of a in $f(x) = ab^x$ with b > 1

Multiplying a growing exponential function (b > 1) by a constant *a* does not change the growth rate, but it does stretch or compress the graph vertically, and reflects the graph across the *x*-axis if a < 0.

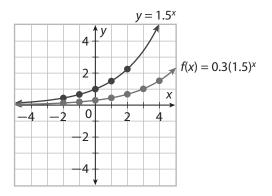
A **vertical stretch** of a graph is a transformation that pulls the graph away from the *x*-axis. By multiplying the *y*-value of each (*x*, *y*) pair by *a*, where |a| > 1, the graph is stretched by a factor of |a|.

A **vertical compression** of a graph is a transformation that pushes the graph toward the *x*-axis. By multiplying the *y*-value of each (x, y) pair by *a*, where |a| < 1, the graph is compressed by a factor of |a|.

Example 1 Make a table of values for the function given. Then graph it on the same coordinate plane with the graph of $y = 1.5^x$. Describe the end behavior and find the *y*-intercept of each graph.

(A)
$$f(x) = 0.3(1.5)^x$$

X	$f(x) = 0.3(1.5)^{x}$
-2	0.133
-1	0.2
0	0.3
1	0.45
2	0.675
3	1.013
4	1.519



End Behavior:

$$f(x) \to \infty \text{ as } x \to \infty$$

 $f(x) \to 0 \text{ as } x \to -\infty$

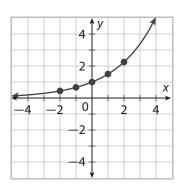
$$f(x) \to 0 \text{ as } x \to -\infty$$

y-intercept: 0.3

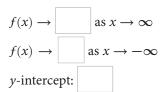
B
$$f(x)$$

 $= -2(1.5)^{x}$

x	$f(x) = -2(1.5)^{x}$
-4	
-3	
-2	
-1	
0	
1	
2	



End Behavior:



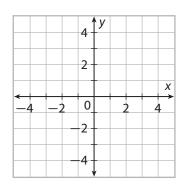
Reflect

2. **Discussion** What can you say about the common behavior of graphs of the form $f(x) = ab^x$ with b > 1? What is different when *a* changes sign?

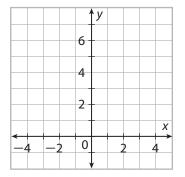
Your Turn

Graph each function, and describe the end behavior and find the *y*-intercept of each graph.

3.
$$f(x) = -0.5(1.5)^x$$



4. $f(x) = 4(1.5)^x$



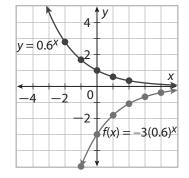
Explain 2 Changing the Value of a in f(x) = ab^x with 0 < b < 1</p>

Multiplying a decaying exponential function (b < 1) by a constant *a* does not change the growth rate, but it does stretch or compress the graph vertically.

Example 2 Make a table of values for the function given. Then graph it on the same coordinate plane with the graph of $y = 0.6^x$. Describe the end behavior and find the *y*-intercept of each graph.

(A)
$$f(x) = -3(0.6)^x$$

X	$f(x) = -3(0.6)^x$
-1	-5
0	-3
1	-1.8
2	-1.08
3	-0.648



End behavior:

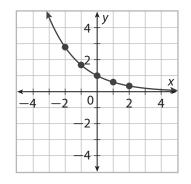
$$f(x) \to 0 \text{ as } x \to \infty$$

$$f(x) \to -\infty$$
 as $x \to -\infty$

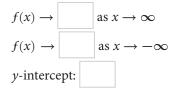
y-intercept: -3

B $f(x) = 0.5 (0.6)^x$

x	$f(x) = 0.5(0.6)^{\times}$
-4	
-3	
-2	
-1	
0	
1	
2	



End Behavior:



Reflect

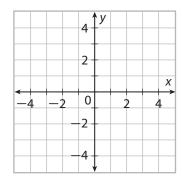
5. Discussion What can you say about the common behavior of graphs of the form $f(x) = ab^x$ with 0 < b < 1? What is different when *a* changes sign?

Your Turn

Graph each function, and describe its end behavior and *y*-intercept.

6.
$$f(x) = 2(0.6)^x$$

7.
$$f(x) = -0.25(0.6)^x$$



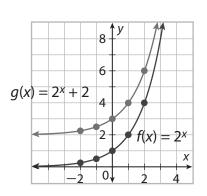
Explain 3 Adding a Constant to an Exponential Function

Adding a constant to an exponential function causes the graph of the function to translate up or down, depending on the sign of the constant.

Example 3 Make a table of values for each function and graph them together on the same coordinate plane. Find the *y*-intercepts, and explain how they relate to the translation of the graph.

(A) $f(x) = 2^x$ and $g(x) = 2^x + 2$

x	$f(x) = 2^x$	$g(x) = 2^x + 2$
-2	0.25	2.25
-1	0.5	2.5
0	1	3
1	2	4
2	4	6

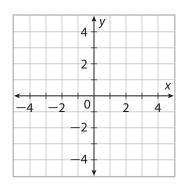


The *y*-intercept of f(x) is 1.

The *y*-intercept of g(x) is 3.

The *y*-intercept of g(x) is 2 more than that of f(x) because g(x) is a vertical translation of f(x) up by 2 units.

x	$\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{0.7}^{x}$	$g(x) = 0.7^{x} - 3$
-2		
-1		
0		
1		
2		
The <i>y</i> -inter	cept of $f(x)$ is .	



The *y*-intercept of g(x) is

The *y*-intercept of g(x) is 3 (more/less)than that of f(x) because g(x) is a vertical translation of f(x) (up/down) by 3 units.

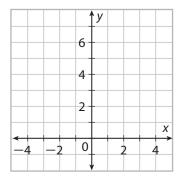
Reflect

What do you think will happen to the *y*-intercept of an exponential function with both a stretch and a 8. translation, such as $f(x) = 3(0.7)^{x} + 2$?

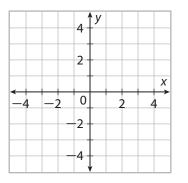
YourTurn

Graph the functions together on the same coordinate plane. Find the y-intercepts, and explain how they relate to the translation of the graph.

9.
$$f(x) = 0.4^x$$
 and $g(x) = 0.4^x + 4$



10.
$$f(x) = 2(1.5)^x$$
 and $g(x) = 2(1.5)^x - 3$



© Houghton Mifflin Harcourt Publishing Company

- **11.** How do you determine the *y*-intercept of an exponential function $f(x) = ab^x + k$ that has been both stretched and translated?
- **12.** Describe the end behavior of a translated exponential function $f(x) = b^x + k$ with b > 1 as x approaches $-\infty$.
- **13.** Essential Question Check-in If *a* and *b* are positive real numbers and $b \neq 1$, how does the graph of $f(x) = ab^x$ change when *b* is changed?

🚱 Evaluate: Homework and Practice

Exercises 1 and 2 refer to the functions $f_1(x) = 2.5^x$ and $f_2(x) = 3^x$.

- **1.** Which function grows faster as *x* increases toward ∞ ?
- **2.** Which function approaches 0 faster as *x* decreases toward $-\infty$?

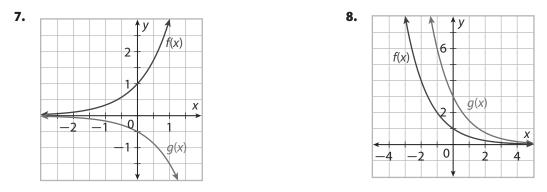
Exercises 3 and 4 refer to the functions $f_1(x) = 0.5^x$ and $f_2(x) = 0.7^x$.

- **3.** Which function grows faster as *x* decreases toward $-\infty$?
- **4.** Which function approaches 0 faster as *x* increases toward ∞ ?

Label each of the following functions, g(x), as a vertical stretch or a vertical compression of the parent function, f(x), and tell whether it is reflected about the *x*-axis. 5. $g(x) = 0.7(0.5)^x$, $f(x) = 0.5^x$ 6. $g(x) = -1.2(5)^x$, $f(x) = 5^x$

Online Homework
Hints and Help
Extra Practice

Label each of the following functions, g(x), as a vertical stretch or a vertical compression of the parent function, f(x), and tell whether it is reflected about the *x*-axis.



Find the *y*-intercept for each of the functions, g(x), from Exercises 5–8.

9. $g(x) = 0.7(0.5)^x$ 10. $g(x) = -1$.	$2(5)^{x}$
--	------------

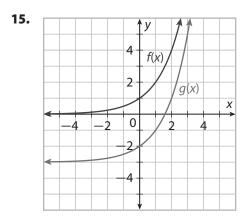
11. Use g(x) from Exercise 7.

12. Use g(x) from Exercise 8.

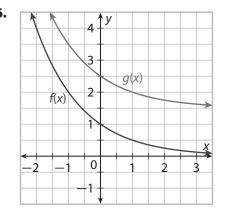
Describe the translation of each of the functions, g(x), compared to the parent function, f(x).

13.
$$f(x) = 0.4^x$$
, $g(x) = 0.4^x + 5$

14.
$$f(x) = -2(1.5)^x$$
, $g(x) = -2(1.5)^x - 2$



16.



© Houghton Mifflin Harcourt Publishing Company

The height *h* above the floor of the *n*th bounce of a bouncy ball dropped from a height of 10 feet above the floor can be characterized by a decaying exponential function, $h(n) = 10(0.8)^n$, where each bounce reaches 80% of the height of the previous bounce.

- **17.** Write the new function if the ball is dropped from 5 feet.
- **18.** What kind of transformation was that from the original function, $h(n) = 10(0.8)^n$?
- **19.** Write the function that describes what happens if the ball is dropped from 10 feet above a table top that is at a height of 3 feet.

- **20. Biology** Unrestrained growth of cells in a petri dish can be extremely rapid, with a single cell growing into a number of cells, *N*, given by the formula, $N(t) = 8^t$, after *t* hours.
 - **a.** Write the formula for the number of cells in the petri dish when a culture is started with 50 isolated cells.
 - **b.** How many cells do you expect after 3 hours?

A bank account with an initial deposit of \$1000 and an interest rate of 5% increases by 5% each year. The balance (B) as a function of time in years (t) can be described by an exponential function: $B(t) = 1000(1.05)^t$

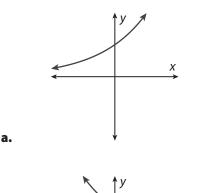
- **21.** What parameter of the exponential form $f(x) = ab^x + k$ represents the initial balance of \$1000?
- **22.** What is the *y*-intercept of B(t)?
- **23.** What parameter would change if the interest rate were changed to 7%?
- **24.** Which bank account balance grows faster, the one with 5% interest or the one with 7% interest?
- **25.** What kind of transformation is represented by changing the initial balance to \$500?
- **26.** Match the graph to the characteristics of the function $f(x) = ab^x$.

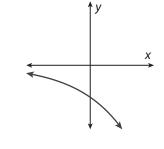
 \dot{x}

1. a < 0, b > 1 **2.** a > 0, 0 < b < 1 **3.** a > 0, b > 1 **4.** a < 0, 0 < b < 1

b.

d.





X

c.

H.O.T. Focus on Higher Order Thinking

27. Critical Thinking Describe how the graph of $f(x) = ab^x$ changes for a given positive value of *a* as you increase the value of *b* when b > 1. Discuss the rise and fall of the graph and the *y*-intercept.

28. Communicate Mathematical Ideas Consider the functions $f_1(x) = (1.02)^x$ and $f_2(x) = (1.03)^x$. Which function increases more quickly as *x* increases to the right of 0? How do the growth factors support your answer?

29. Communicate Mathematical Ideas Consider the function $f_1(x) = (0.94)^x$ and $f_2(x) = (0.98)^x$. Which function decreases more quickly as *x* increases to the right of 0? How do the growth factors support your answer?

Lesson Performance Task

A coffee shop serves two patrons cups of coffee. The initial temperature of the coffee is 170 °F. As the coffee sits in the 70 °F room, the temperature follows the pattern of a transformed exponential function. One patron leaves her coffee untouched, resulting in a slow cooling toward room temperature. The other patron is in a hurry and stirs her coffee, resulting in a faster cooling rate.

Both cups of coffee can be modeled with transformed exponential functions of the form $T(t) = ab^t + k$.

Each minute, the unstirred coffee gets 10% closer to room temperature, and the stirred coffee gets 20% closer. Find the functions $T_s(t)$ and $T_u(t)$ for the stirred and unstirred cups of coffee, fill in the table of values, and graph the functions. Determine how long it takes each cup to drop below 130 °F (don't try to solve the equations exactly, just use the table to answer to the nearest minute).

Time (minutes)	Temperature (°F, unstirred)	Temperature (°F, stirred)
0		
1		
2		
3		
4		
5		

