A Complete the table of values for the functions $f_1(x) = 1.2^x$ and $f_2(x) = 1.5^x$. Use a calculator to find the values and round to the nearest thousandth if necessary.

x	$f_1(x)=1.2^x$	$f_2(x)=1.5^x$
-2	0.694	0.444
-1	0.833	0.667
0	1	1
1	1.2	1.5
2	1.44	2.25

- B Select the option that makes the statement true.
 - $(f_1(x)/(f_2(x)))$ increases more quickly as x increases.
 - $(f_1(x))(f_2(x))$ approaches 0 more quickly as x decreases.
- The y-intercept of $f_1(x)$ is 1. The y-intercept of $f_2(x)$ is 1.
- Fill in the table of values for the functions $f_3(x) = 0.6^x$ and $f_4(x) = 0.9^x$. Round to the nearest thousandth again.

x	$f_3(x)=0.6^x$	$f_4(x)=0.9^x$
-2	2.778	1.235
-1	1.667	1.111
0	1	1
1	0.6	0.9
2	0.36	0.81

- ($f_3(x)/f_4(x)$) increases more quickly as x decreases.
 - $(f_3(x))/f_4(x)$) approaches 0 more quickly as x increases.
- F The y-intercept of $f_3(x)$ is 1. The y-intercept of $f_4(x)$ is 1.

Reflect

Consider the function, y = 1.3^x. How will its graph compare with the graphs of f₁(x) and f₂(x)? Discuss end behavior and the y-intercept.

All three graphs have the same y-intercept of 1. The graph of $y = 1.3^x$ falls between

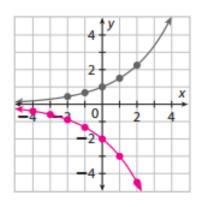
the other two graphs and increases more quickly than $f_1(x)$ but less quickly than $f_2(x)$ as

x increases to the right of 0. The graph falls more quickly than that of $f_1(x)$ but less

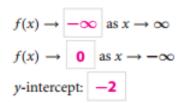
quickly than that of $f_2(x)$ as x decreases to the left of 0.

B
$$f(x) = -2(1.5)^x$$

x	$f(x) = -2(1.5)^x$
-4	-0.395
-3	-0.593
-2	-0.889
-1	-1.333
0	-2
1	-3
2	-4.5



End Behavior:



Reflect

Discussion What can you say about the common behavior of graphs of the form $f(x) = ab^x$ with b > 1? What is different when a changes sign?

All graphs of the form $f(x) = ab^x$ with b > 1 approach 0 as x approaches $-\infty$ and have a

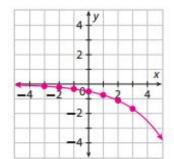
y-intercept at (0, a). The sign of a determines the end behavior as x approaches ∞ ; for a > 0

f(x) increases toward infinity, and for a < 0, f(x) decreases toward negative infinity.

Your Turn

Graph each function, and describe the end behavior and find the y-intercept of each graph.

3. $f(x) = -0.5(1.5)^x$



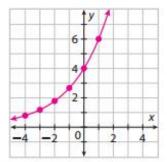
End behavior:

$$f(x) \to -\infty$$
 as $x \to \infty$

$$f(x) \to 0$$
 as $x \to -\infty$

y-intercept: -0.5

4. $f(x) = 4(1.5)^x$



End behavior:

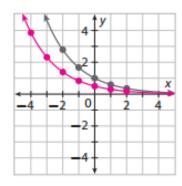
$$f(x) \to \infty$$
 as $x \to \infty$

$$f(x) \to 0$$
 as $x \to -\infty$

y-intercept: 4

B $f(x) = 0.5 (0.6)^x$

X	$f(x) = 0.5(0.6)^x$
-4	3.858
-3	2.315
-2	1.389
-1	0.833
0	0.5
1	0.3
2	0.18



End Behavior:

$$f(x) \to \mathbf{0}$$
 as $x \to \infty$
 $f(x) \to \mathbf{\infty}$ as $x \to -\infty$
y-intercept: **0.5**

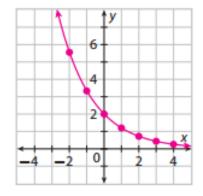
Reflect

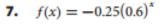
5. Discussion What can you say about the common behavior of graphs of the form f(x) = ab^x with 0 < b < 1? What is different when a changes sign?</p>
All graphs of the form f(x) = ab^x with 0 < b < 1 approach 0 as x approaches ∞ and have a y-intercept at (0, a). The sign of a determines the end behavior as x approaches -∞;</p>
for a > 0, f(x) approaches ∞ as x approaches -∞, and for a < 0, f(x) approaches -∞ as x approaches -∞.</p>

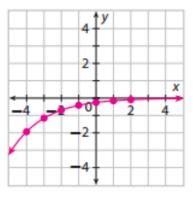
Your Turn

Graph each function, and describe its end behavior and y-intercept.

6. $f(x) = 2(0.6)^x$







End behavior:

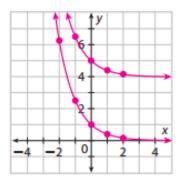
$$f(x) \to 0$$
 as $x \to \infty$
 $f(x) \to \infty$ as $x \to -\infty$
y-intercept: 2

$$f(x) \rightarrow 0$$
 as $x \rightarrow \infty$
 $f(x) \rightarrow -\infty$ as $x \rightarrow -\infty$
y-intercept: -0.25

YourTurn

Graph the functions together on the same coordinate plane. Find the *y*-intercepts, and explain how they relate to the translation of the graph.

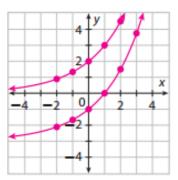
9. $f(x) = 0.4^x$ and $g(x) = 0.4^x + 4$



The y-intercept of f(x) is 1.

The y-intercept of g(x) is 5.

The y-intercept of g(x) is 4 more than that of f(x) because g(x) is a vertical translation of f(x) up by 4 units.



The y-intercept of f(x) is 2.

The y-intercept of g(x) is -1.

The y-intercept of g(x) is 3 less than that of f(x) because g(x) is a vertical translation of f(x) down by 3 units.

Elaborate

11. How do you determine the y-intercept of an exponential function f(x) = abx + k that has been both stretched and translated?

The y-intercept of all the parent exponential functions $f(x) = b^x$ is 1. First multiply 1 by a to find the effect of the stretch, and then add k to find the effect of the translation.

12. Describe the end behavior of a translated exponential function f(x) = b^x + k with b > 1 as x approaches -∞.

Since all points are shifted by k, the function approaches k as x approaches $-\infty$.

13. Essential Question Check-in If a and b are positive real numbers and $b \ne 1$, how does the graph of $f(x) = ab^x$ change when b is changed?

If b > 1, increasing b makes the graph rise more quickly as x increases. If 0 < b < 1,

increasing b makes the graph fall more gradually as x increases.