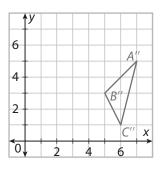

In Exercises 9–12, use the diagram. Fill in the blank with the letter of the correct image described.

- **9.** ____ is the result of the sequence: *G* reflected over a vertical line and then a horizontal line.
- **10.** ____ is the result of the sequence: *D* rotated 90° clockwise around one of its vertices and then reflected over a horizontal line.
- **11.** ____ is the result of the sequence: *E* translated and then rotated 90° counterclockwise.
- **12.** ____ is the result of the sequence: *D* rotated 90° counterclockwise and then translated.

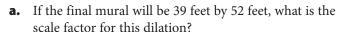
Choose the correct word to complete a true statement.


- **13.** A combination of two rigid transformations on a preimage will always/sometimes/never produce the same image when taken in a different order.
- **14.** A double rotation can always/sometimes/never be written as a single rotation.
- **15.** A sequence of a translation and a reflection always/sometimes/never has a point that does not change position.
- **16.** A sequence of a reflection across the *x*-axis and then a reflection across the *y*-axis always/sometimes/never results in a 180° rotation of the preimage.
- **17.** A sequence of rigid transformations will always/sometimes/never result in an image that is the same size and orientation as the preimage.
- **18.** A sequence of a rotation and a dilation will always/sometimes/never result in an image that is the same size and orientation as the preimage.
- **19.** $\triangle QRS$ is the image of $\triangle LMN$ under a sequence of transformations. Can each of the following sequences be used to create the image, $\triangle QRS$, from the preimage, $\triangle LMN$? Select yes or no.
 - **a.** Reflect across the *y*-axis and then translate along the vector $\langle 0, -4 \rangle$.
- Yes No
- **b.** Translate along the vector $\langle 0, -4 \rangle$ and then reflect across the *y*-axis.
- Yes No
- **c.** Rotate 90° clockwise about the origin, reflect across the *x*-axis, and then rotate 90° counterclockwise about the origin.
- O Yes O No

- **d.** Rotate 180° about the origin, reflect across the *x*-axis, and then translate along the vector $\langle 0, -4 \rangle$.
- O Yes O No

© Houghton Mifflin Harcourt Publishing Company

20. A teacher gave students this puzzle: "I had a triangle with vertex *A* at (1, 4) and vertex *B* at (3, 2). After two rigid transformations, I had the image shown. Describe and show a sequence of transformations that will give this image from the preimage."



H.O.T. Focus on Higher Order Thinking

21. Analyze Relationships What two transformations would you apply to $\triangle ABC$ to get $\triangle DEF$? How could you express these transformations with a single mapping rule in the form of $(x, y) \rightarrow (?, ?)$?

22. Multi-Step Muralists will often make a scale drawing of an art piece before creating the large finished version. A muralist has sketched an art piece on a sheet of paper that is 3 feet by 4 feet.

b. The owner of the wall has decided to only give permission to paint on the lower half of the wall. Can the muralist simply use the transformation $(x, y) \rightarrow \left(x, \frac{1}{2}y\right)$ in addition to the scale factor to alter the sketch for use in the allowed space? Explain.

23. Communicate Mathematical Ideas As a graded class activity, your teacher asks your class to reflect a triangle across the *y*-axis and then across the *x*-axis. Your classmate gets upset because he reversed the order of these reflections and thinks he will have to start over. What can you say to your classmate to help him?