
1

AP Computer Science Principles
Course Syllabus and Planning Guide

2

Curricular Requirements

Curricular Requirements Page(s)
CR1 The teacher and students have access to college-level computer

science resources, in print or electronic format.
3

CR2 The course provides opportunities to develop student understanding
of the required content outlined in each of the Big Ideas described in
the AP Course and Exam Description.

9

CR3 The course provides opportunities to develop student understanding
of the Big Ideas.

12, 15, 18, 28, 28

CR4 The course provides opportunities for students to develop the skills
related to Computational Thinking Practice 1: Computational Solution
Design.

21

CR5 The course provides opportunities for students to develop the skills
related to Computational Thinking Practice 2: Algorithms and Program
Development.

15

CR6 The course provides opportunities for students to develop the skills
related to Computational Thinking Practice 3: Abstraction in Program
Development.

18

CR7 The course provides opportunities for students to develop the skills
related to Computational Thinking Practice 4: Code Analysis.

21

CR8 The course provides opportunities for students to develop the skills
related to Computational Thinking Practice 5: Computing Innovations.

25

CR9 The course provides opportunities for students to develop the skills
related to Computational Thinking Practice 6: Responsible Computing.

28

CR10 The course provides a minimum of three opportunities for students to
investigate different computing innovations.

28

CR11 Students are provided at least twelve (12) hours of dedicated class
time to complete the AP Create Performance Task.

22

3

Introduction

AP Computer Science Principles (AP CSP) is a full-year, rigorous course that introduces students
to the foundational concepts of computer science and explores the impact computing and
technology have on our society. The course covers a broad range of foundational topics
including: programming, algorithms, the Internet, big data, digital privacy and security, and the
societal impacts of computing.

About the Course

Project STEM developed this course in partnership with the University of Texas at Austin’s
UTeach Institute. This custom course combines the esteemed UTeach CS Principles curriculum
with additional features and tools specific for a technology-driven student-centered curriculum,
including: instructional lesson videos and slides, worked practice problems, unit project
scaffolding, student activity and task examples and grading rubrics, enhanced online and offline
question banks with College Board-style questions, annotated explanations for all assessment
questions, and a practice mini performance task. Additionally, UTeach’s lesson plans have been
substituted for lesson and unit guides, since they have been revised to focus less on
teacher-driven directives for students (“say this,” “do this,” etc.) and more on teaching tips and
strategies.

All schools using Project STEM’s AP CSP course should use this syllabus.

4

Course Overview

Prerequisites
The College Board suggests students successfully complete a first year high school Algebra
course prior to enrolling in AP CSP. An Algebra course will provide a strong foundation in
problem solving, basic linear functions, composition of functions, and the Cartesian (x,y)
coordinate system. These skills and topics are essential for student facility in this course. For
further preparation, we recommend students complete our Computer Science Python
Fundamentals course prior to taking this course. That course introduces students to the
fundamentals of computing, providing a foundation on which this course can build.

The College Board adheres to an open enrollment policy for this course, meaning any student
that is willing and academically prepared can participate in the course.

Pedagogical Approach
Project STEM’s AP CS Principles course follows the blended learning model. It takes a
student-centered approach powered by technology to help realize the goal of high achievement
for all students. The course promotes student engagement, independent thought and
interactive collaboration with peers. Student-centric lessons, activities and assessments are
paired with augmentative teacher-centric lesson, activity and task guides and reporting to
empower teachers to empower students. Additionally, teacher and student forums with
moderation and input from Project STEM staff and team of teaching assistants provide dynamic
community and support.

Programming Requirements
The coding languages Scratch and Python are both used in this course. Scratch is a free
block-based programming environment that is accessible enough for beginners, yet can support
the development of advanced algorithms used in more complex games and applications. Python
is a text-based language with easy to read and write syntax - perfect for beginning
programmers.

5

Course Goals

Project STEM’s AP CSP course fully addresses the College Board’s AP Computer Science
Principles Curriculum Framework. The framework defines two through-course curricular
requirements: six “computational thinking practices” and five “big ideas.” Additionally, the
framework describes in detail what students should be able to do, know, and retain by the end
of the course with three types of expressions: Enduring Understandings, Learning Objectives,
and Essential Knowledge Statements. A basic overview of each of these items is provided
below, and we encourage instructors to read more about them in the AP Computer Science
Principles Curriculum Framework.

Six Computational Thinking Practices
The six Computational Thinking Practices contain skills that students should develop to not just
learn about content, but to change their way of thinking.

Computational Thinking Practices
P1 P2 P3 P4 P5 P6

Computational
Solution Design

Algorithms and
Program

Development

Abstraction in
Program

Development

Code Analysis Computing
Innovations

Responsible
Computing

Five Big Ideas
The course material focuses on Five Big Ideas. These ideas encompass concepts that are
foundational to computer science.

Big Ideas

Big Idea 1 (CRD) Big Idea 2 (DAT) Big Idea 3 (AAP) Big Idea 4 (CSN) Big Idea 5 (IOC)
Creative

Development
Data Algorithms and

Programming
Computing Systems

and Networks
Impact of

Computing

Enduring Understandings
Enduring Understandings (EUs) describe the concepts students should understand after going
through this course. The goal is for Learning Objectives and Essential Knowledge Statements to
build Enduring Understandings.

Learning Objectives
Learning Objectives (LOs) articulate what students should be able to do by the end of the
course. Each learning objective corresponds to one of the Five Big Ideas and one part of a
computational thinking practice. Both the multiple choice exam and through-course
performance task test students' mastery of these learning objectives.

Essential Knowledge Statements
Essential Knowledge Statements (EKs) provide facts or concepts students should know to prove
their understanding of the learning objectives.

6

The AP Exam

The AP Exam will test students on their understanding of the five big ideas through a
multiple-choice exam and one through-course performance task. Together, these components
will be used to calculate the AP score (on a 1-5 scale).

Multiple Choice Exam
The 70-question multiple choice exam will test students' understanding of computational logic,
which they will learn over the course of the year. This section is programming language
agnostic, meaning students don't have to know a formal coding language to complete this part
of the exam. The multiple-choice exam will be in May (exact date can be found on the College
Board website) and accounts for 70% of a student’s total AP score.

Performance Task
The performance task in this course is called the Create Task. This task functions as a project
that students must complete independently and submit online prior to taking the
multiple-choice portion of the exam. The Create Task is worth 30% of a student’s overall AP
score. In this task, students will create their own program. Students will submit a video of their
program running and a written response describing how their program works. The students
must be given a minimum of 12 hours in class to work on it.

Students are required to submit their performance task via the College Board’s online Digital
Portfolio. You can find the due date for the Create Task here.

https://apstudents.collegeboard.org/ap-exams-overview
https://apstudents.collegeboard.org/ap-exams-overview
https://apstudents.collegeboard.org/dates/ap-computer-science-principles-performance-tasks-due-date

7

Course Materials

Project STEM’s AP Computer Science Principles has an introductory unit, six instructional units,
a mini performance task module, and a final AP review unit. Each is strategically designed to
prepare students for the AP CSP Exam. The course units consist of daily lessons, instructional
videos, lesson slides, lesson activities, code-along exercises, projects, vocabulary reviews, AP
test preparation, quizzes, and tests.

Student Lessons
The student lessons are typically composed of the following components:

● Introduction: a high-level overview of the lesson.
● Objectives: a list of what students will learn and do during the lesson.
● Instructional Video(s): one or more explanatory or demo videos taught by an expert

computer science teacher, some of which include code-along activities. Most videos are
accompanied by corresponding downloadable slides for review or note taking.

● In-Lesson Activities: these activities take place during the lesson, prior to the graded
exercises, such as a class discussion, interactive, or code-along activities.

● Summary: a text version of the key concepts in the lesson.
● Vocabulary: a list of terms and definitions for the lesson.
● Lesson Exercises: one or more graded exercises that ask students to apply or extend the

concepts in the lesson. Lesson exercises include coding activities, discussions, research,
strategic games, computational practices (non-coding), and more. The variety of formats
and tasks prepare students for the diverse questions and tasks on the AP CSP Exam.

● AP-Style Practices: a practice activity where students complete a set of questions in the
format and style of the AP exam.

Other Assignments
In addition to the daily lessons and exercises, the AP CSP curriculum also offers other types of
assignments for students.

● Vocabulary Practices: Each unit has a vocabulary practice that helps students to
reinforce the unit’s keywords. These practices are game-based and allow for several
different types of practice formats like matching and flashcards. The vocabulary practices
are not a graded assignment.

● Big Picture Exercises: classroom investigations or discussions that examine the cultural
and societal impact of emerging technologies.

● Unit Projects: Five of the six units include an extended project that challenges the
students to apply various concepts from the current and past units in a new or more
complex way. These projects demand a high level of critical thinking and problem
solving.

● Unit Review Activities: Each unit has an autograded review activity where students
complete a set of ~20 multiple choice questions to prepare for the unit test.

● A Mini Performance Task: The course includes a practice performance task that helps
prepare students for the official AP CSP Create Task. This is a multi-day project that
mirrors the types of tasks and activities that students must complete to meet the
College Board requirements for the official task.

8

Assessments
The AP Computer Science Principles course offers two types of assessments: quizzes and tests.

● Quizzes: Each unit has two short quizzes that act as a checkpoint for understanding.
These quizzes range from 4-7 multiple choice questions with shuffled answers.

● Tests: Each unit has a summative test at its conclusion. The tests are always 20 multiple
choice questions with shuffled answers.

Grading
For Project STEM’s AP CSP course, there are several types of formative and summative
assessments, all intended to prepare students for the end-of-year 70-question multiple choice
exam (70% of the overall AP score) as well as the through-course Create performance task (30%
of the overall AP score).

The default course grading scheme maps to this 60/40 breakdown:
● 10% Unit Quizzes
● 50% Unit Exams

● 10% Lesson Exercises and Activities
● 10% Mini Performance Task
● 20% Unit Projects

Teacher Sidebar
The Teacher Sidebar, which is located within a teacher’s version of the student course, contains
several types of resources that will help you in facilitating the course, including:

● Lesson guides that detail the lesson objectives, lesson components, as well as indicators
of key points to emphasize and common misconceptions

● Supplemental resources, such as worksheets or unit project rubrics
● Alternative assessments, such as paper-based and alternate versions of quizzes and tests

for each unit
● Answer keys, including annotated solutions to quizzes and tests

9

Course Sequencing

The year-long curriculum directly addresses the College Board’s AP Computer Science Principles
curriculum framework. It has been carefully designed to teach students the core skills for 1)
creating and using computational tools 2) applying logical reasoning and creative problem
solving and 3) recognizing real-world applications for digital technology. As described above, it is
comprised of an introductory unit, six instructional units, one mini module for performance task
preparation, and a final unit focused on the course’s AP exam. The curriculum also provides one
window of time for students to complete the required Create Task.

The sequencing and a high-level description of all components is outlined below:

Content Overview

Unit 0: Course Introduction
Enter the world of computer science by learning about the field itself and the goals of
this AP-level course.

Big Ideas:
CRD, AAP, IOC

Unit 1: Computational Thinking
Study the iterative development process, and start applying it to build your own
programs in Scratch.

Big Ideas:
CRD, AAP

Unit 2: Programming
Examine computational logic structures and problem solving capabilities for programs
in text-based algorithms, AP-style Pseudocode, and Scratch.

Big Ideas:
CRD, AAP, CSN, IOC

Unit 3: Data Representation
Explore the different means of representing information digitally.

Big Ideas:
CRD, DAT, AAP, IOC

Mini Create Task Module
Learn about the Create Performance Task component of the AP exam, and practice
the skills required for it.

Big Ideas:
CRD, AAP

Unit 4: Digital Media Processing
Use Python to programmatically manipulate digital images and audio.

Big Ideas:
CRD, DAT, AAP, IOC

Create Performance Task
Students demonstrate their learning by creating a portfolio of their work for
submission to the College Board.

Big Ideas:
AAP

Unit 5: Big Data
Discover new knowledge through the use of large data sets.

Big Ideas:
CRD, AAP, IOC

Unit 6: Innovative Technologies
Assess the current state of technology and investigate its role in our everyday lives.

Big Ideas:
DAT, AAP, CSN, IOC

Unit 7: The AP Exam
Students review and prepare for all components of the AP Exam.

Big Ideas:
CRD, DAT, AAP, CSN, IOC

10

Unit 0: Course Introduction

Unit 0 is an introduction to the AP Computer Science Principles course. The unit exposes students to the
foundational topics of computer science and computing. Additionally, it introduces the major topics and
components on the AP exam, so students will become familiar with the big ideas and computational
thinking practices around which the course is focused. Before finishing the unit, students will engage
with their preconceived notions about computer science and challenge these ideas.

Unit 0 Schedule

Topic Lesson

Course Context Welcome to AP Computer Science Principles

Computer Science Fundamentals

Course Structure

Course
Resources

Student Forum

Forum Guidelines

Honor Code

Self-Evaluation Entry Questionnaire

Unit 0 Topics

Course Context
○ Students will examine and discuss the motivations behind a number of high-profile individuals in

the field of programming.
○ Students will discuss the benefits of programming as a tool and a profession.
○ Students will discuss the impact computing has on society, business, and the economy.
○ Students will examine the ideas of computational thinking and computational artifacts.

Course Resources
○ Students will become familiar with the resources on the Project STEM platform.

Self-Evaluation
○ Students will consider their relationship with computer science and programming.

11

Unit 1: Computational Thinking

This unit lays the foundation for computational logic. Students first explore the iterative development
process, seeing how an idea translates to a real, functioning program. Then, they take a closer look at
this process by examining algorithms, languages, program execution, and the through-course concept of
abstraction. For the second half of the unit, students get started coding in Scratch. Using this visual,
block-based programming language, they learn basic programming concepts and constructs, including
user input and variables. In creating programs of their own, they have the opportunity to apply the
iterative development process. Over the course of the unit, students learn how to build computational
artifacts and solve computational problems - two skills essential to the rest of the course.

There are no major projects in this unit, but there are several post-lesson opportunities for students to
apply the iterative development process and basic programming concepts.

Unit 1 Schedule

Topic Lesson

Program
Development

The Iterative Development Process

Algorithms

Languages

Idea to Execution

Big Picture Collaboration

Visual
Programming

Getting Started in Scratch

Programming with Blocks

Program State User Input and Storage

Defining Variables

Applying Variables

12

Unit 1 Topics

Program Development
○ Students will examine strategies for approaching large-scale problems.
○ Students will explore the non-linear approach to solving problems with the iterative

development process.
○ Students will identify a number of common features of algorithms, including sequencing,

selection, and repetition.
○ Students will design and evaluate text-based algorithms.
○ Students will examine the need for clarity and precision in communicating an algorithmic

solution to a problem.
○ Students will examine the shortcomings and ambiguities of natural languages.
○ Students will identify the elements of clear communication, including well-specified grammar,

vocabulary, and syntax.
○ Students will analyze the need for artificial programming languages.
○ Students will compare high-level languages with low-level languages.
○ Students will examine the process in which a program is written in a high-level language,

compiled into a low-level language, loaded into memory, and then executed by a processor.

Big Picture
○ Students will examine the benefits of working collaboratively.

Visual Programming
○ Students will utilize a graphical editor to read, construct, and execute dynamic programs.
○ Students will examine, modify, and execute programs developed by others.
○ Students will examine how well-specified behavior of objects can be constructed through

sequential actions and operations.
○ Students will examine a number of common programming errors.
○ Students will explore a number of common debugging strategies.
○ Students will develop solutions for correcting common programming errors.

Program State
○ Students will write programs that incorporate dynamic, user-driven, keyboard controls and

input.
○ Students will examine how the dynamic state of an object or program can be stored and

changed using variables.
○ Students will analyze the role of clear, descriptive names for objects, behaviors, variables, and

other identifiers in maintaining the readability of code.
○ Students will analyze and evaluate the correctness of their programs.

Unit 1 Highlighted Activities

Throughout the entire unit, students get a chance to complete many activities called “Try it Out!” during the
lessons. In these activities students are tasked with exploring new bits and pieces of code and discovering
how they can be applied in order to create successful algorithms. As part of this process, they are
investigating, reflecting, designing, prototyping and testing their programs, all of which are part of the
creative development process. [CRD]

13

Unit 2: Programming

This unit focuses on the three main control structures utilized within algorithms and programs:
sequencing, selection, and iteration. Students first examine these structures conceptually, and then learn
how to formally construct and evaluate them in Scratch and AP-style Pseudocode. In doing so, they hone
their programming abilities and become familiar with the importance of precise commands and
well-structured logic. Building on this knowledge, students explore how abstraction can be applied to
algorithmic solutions using procedures, and examine 1) how algorithmic solutions should be efficient
and help programs scale and 2) what happens when a problem is not able to be solved with an
algorithm. At the end of the unit, students get a glimpse of how design documentation for hardware
components employs computational logic and abstraction just like programming.

There is one major project in this unit: the Password Generator Project.

Unit 2 Schedule

Topic Lesson

Control
Structures

Defining Sequencing

Applying Sequencing

Coding Skills Pseudocode

Control
Structures

Defining Selection

Applying Selection

Defining Iteration

Applying Iteration

Procedural
Abstraction

Procedures

Decidability and
Efficiency

Solvability & Performance

Big Picture Moore’s Law

Hardware
Abstraction

Logic Gates & Hardware

Unit Project Password Generator Project

14

Unit 2 Topics

Control Structures
○ Students will examine a number of common features of algorithms, including sequencing,

selection, and repetition.
○ Students will examine how well-specified behavior of objects can be constructed through

sequential actions and operations.
○ Students will examine the uses of selection statements in programming.
○ Students will analyze the differences between simple selection and complex, nested selection

statements.
○ Students will examine the use of the Boolean operators "AND," "OR," and "NOT" in constructing

complex conditional statements.
○ Students will examine the uses of iteration statements in programming.
○ Students will consider how to make a sequence of events more efficient with iteration

statements.
○ Students will combine sequencing, selection, and repetition structures alongside programming

constructs like user input and variables to create computational artifacts.

Coding Skills
○ Students will examine how pseudocode can outline algorithmic processes.
○ Students will read, execute, and construct algorithms in AP-style pseudocode.

Procedural Abstraction
○ Students will compare the methods and relative efficiencies of different algorithms.

Decidability and Efficiency
○ Students will examine the factors that affect the decidability of a problem.
○ Students will identify which problems can and cannot always be solved by an algorithm.
○ Students will examine methods of comparing equivalent algorithms for relative efficiency.
○ Students will evaluate the relative efficiency of equivalent algorithms.
○ Students will identify factors that allow solutions to scale efficiently.

Big Picture
○ Students will examine the implications of Moore's Law on the research and development of new

and existing technologies.

Hardware Abstraction
○ Students will explore the logical processes implemented in hardware design documentation.

15

Unit 2 Highlighted Activities

Throughout the unit students are working on activities where they create algorithms in Scratch to
accomplish a specific purpose. They are learning how to implement selection and iteration structures in
combination with sequencing to create a solution to a program. This builds to students completing a
mini-project (choosing from Drawing a Picture, an Electronic Keyboard, or a Countdown timer) where
they demonstrate their ability to use the Scratch programming language to implement algorithms in a
program. [P2]

Unit Project [AAP]
The Password Generator Project occurs after all lesson components, and is a collaborative, in-class
activity. In this Scratch programming project, students will explore data security considerations and
develop a program for generating unique, secure passwords. Students will:

o Design an algorithm for generating a custom, reproducible password that is uniquely different
for each website (e.g., using the domain name as a seed, etc.).

o Write pseudocode to describe each step of the algorithm used to generate a password.
o Exchange algorithms with peers and share feedback with each other on the clarity of the

pseudocode and the strengths and weaknesses of the algorithms.
o Construct trace tables documenting the result of each step of the algorithm in generating

passwords for different domains.
o Design code in Scratch to implement the password-generating algorithm.

16

Unit 3: Data Representation

In this unit, students explore the different ways digital information can be represented, stored, and
manipulated on a computer. They look at the various levels of abstraction that are used in the digital
representation of discrete data and information. Initially, students will focus on the lowest levels of
digital representation and storage by examining different base representations of numbers (including
decimal and binary) and their application to ASCII and Unicode character encoding. Next, they will
examine the distinctions between analog and digital forms of representation. Finally, students will learn
about lists, a common abstract data type that can be utilized in programs. They will explore the
characteristics of lists and how they can be used to search and sort data.

There is one major project in this unit: the Unintend’o Project.

Unit 3 Schedule

Topic Lesson

Binary Encoding
of Information

Binary

Base Conversions

ASCII vs. Unicode

Coding Skills Programming Binary

Digital
Approximations

Digitization

Analog vs. Digital Data

Big Picture Reselling Digital Music

Lists Making a List

Processing a List

Sorting a List

Lists in Pseudocode

Unit Project Unintend’o Project

17

Unit 3 Topics

Binary Encoding of Information
○ Students will examine how numerical values are represented using different bases, including

decimal and binary.
○ Students will explore methods of converting values from decimal to binary and binary to

decimal.
○ Students will examine the exponential relationship between the number of digits and their range

of representable values.
○ Students will examine how alphanumeric characters and symbols may be represented using

ASCII and Unicode character mappings.
○ Students will analyze the differences in state space between ASCII and Unicode standards.
○ Students will explore how the interpretation of binary data is dependent upon its intended

format and use, including base-64, bitmaps (*.BMP), plaintext (*.TXT), audio (*.MP3), etc.

Coding Skills
○ Students will construct a Scratch program that simulates candles on a birthday cake being lit so

as to show the user's age in binary.

Digital Approximations
○ Students will examine the implications of variable-width encodings (e.g., Morse code) versus

fixed-width encodings (e.g., Baudot code).
○ Students will explore ways in which natural phenomena may be represented digitally.
○ Students will analyze the extent to which digital approximations accurately reflect the reality

that they represent.
○ Students will analyze the differences between discrete (digital) and continuous (analog)

representations of natural phenomena.
○ Students will examine the social implications of the ease with which perfect digital copies can be

made.

Big Picture
○ Students will examine and discuss the legality of reselling "used" digital music.

Lists
○ Students will examine the use of lists as ordered data structures that may contain multiple

values.
○ Students will investigate the use of index values to represent the position of an item in a list.
○ Students will analyze the implications of accessing an index position beyond the bounds of a list.
○ Students will investigate common operations for processing elements of a list, including

searching for an element, removing an element, swapping the positions of two elements, or
sorting an entire list into ascending or descending order.

○ Students will examine the implications of case-sensitivity on ordered lists of strings.
○ Students will consider how lists can appear in pseudocode.

18

Unit 3 Highlighted Activities

Throughout the unit students get a chance to learn about data abstraction as they create and implement
algorithms to make, process and sort lists. They also learn about binary, ASCII, hexadecimal and how bits
play a role in digitization of different types of digital and analog data.

Unit Project [DAT]
The Unintend’o Project is a collaborative, culminating activity positioned at the end of the unit. In this
Scratch programming project, students will write a program that directs the input of a video game
controller. It exposes how bits and binary can work to turn on and off functionalities within programs.
Students will:

o Map each of six controls (UP, DOWN, LEFT, RIGHT, A, and B) to individual bits.
o Map each binary pattern of button presses to different game actions (e.g., walk forward, walk

backward, turn left, turn right, jump, duck, whirl, leap, crawl, etc.).
o Use a list to track the history of button presses.
o Write detailed specifications and justifications for each button-to-action mapping of your design.
o Collaborate with peers throughout the design and development process to determine end-user

requests for features and to share feedback on design and implementation strategies.
o Write documentation detailing the use of the program and its features using appropriate

terminology.
o Develop a Scratch program that acts as a device driver for a video game controller interface.

Mini Create Task Module

This mini-performance task module is a multi-day activity that gives students a chance to deepen their
understanding of the AP CSP Create Task. They begin by exploring the requirements of the task itself.
Then, they move on to evaluate sample student submissions against the official College Board rubric.
After this, students work on a mock create task, learning how to fulfill the project requirements
themselves. Students will:

o begin designing their own program using the iterative development process.
o record a video of the program running.
o provide a written explanation of the purpose, process, algorithms, and abstractions in their

design.
o practice submitting their work in the format College Board requires.
o review a peer’s work and provide feedback, based on the official Create Task rubric.

After completing this activity, students will be prepared for the Create Task later in the course. [P3]

19

Unit 4: Digital Media Processing

In Unit 4, students will use Python to programmatically manipulate digital images and audio. The unit
starts by guiding students through the transition of programming in Python, which is a high-level,
procedural, text-based language. In Python, students will explore the characteristics of the RGB color
model and its use in encoding digital images. They will also investigate the methods of representing and
modifying digital audio, including Auto-Tune and audio compression. The unit concludes with a summary
of the compression methods related to digital media processing.

There is one major project in this unit: the Image Filter Project.

Unit 4 Schedule

Topic Lesson

Introduction to
Python

Scratch vs. Python

Python Basics

Control
Structures

Selection Structures

Iteration Structures

Abstractions Data Abstraction

Procedural Abstraction

Image
Manipulation

RGB Color

Image Manipulation

Encoding Schemes

Digital Manipulation

Big Picture Ethics of Digital Manipulation

Big Picture Intellectual Property

Audio
Manipulation

Audio Manipulation

Audio Processing

Audio Compression

Unit Project Image Filter Project

20

Unit 4 Topics
Introduction to Python

○ Students will explore the capabilities of a text-based programming language (Python).
○ Students will compare and contrast the programming capabilities of a visual programming

language (Scratch) with those of a text-based programming language (Python).
○ Students will understand the importance of using proper punctuation and syntax when coding in

a text-based programming language.

Control Structures
○ Students will write code using common programming constructs like conditional if() for selection

and while() loops for iteration.
○ Students will use boolean, relational and conditional expressions.

Abstraction
○ Students will write code using data abstraction (lists).
○ Students will create and use procedural abstractions in order to make their programs more

readable and versatile.

Image Manipulation
○ Students will examine the structure of raster images as compositions of individual pixels.
○ Students will explore various methods of representing color, including RGB, CMYK, and HSV.
○ Students will explore the various colors that can be produced by the combination of different

ratios of red, green, and blue light.
○ Students will perform base conversions for decimal, binary, and hexadecimal number systems.
○ Students will modify the color channels of pixels in an image to produce a variety of effects.
○ Students will design algorithms for modifying the pixels in an image in prescribed ways to create

custom image filters.
○ Students will explore the difference between lossy and lossless encoding schemes of several

common image file formats.

Big Picture
○ Students will explore the positive and negative consequences of digitally altering images.
○ Students will discuss the ethics of digitally manipulating images, especially in the context of

journalism.
○ Students will discuss the issues related to intellectual property.
○ Students will explore the limitations and rights associated with a number of common licenses,

including Creative Commons.

Audio Manipulation
○ Students will analyze the differences between analog and digital sound.
○ Students will explore the roles that sampling rate and bit depth play in determining the quality of

digitized sound.
○ Students will explore methods of programmatically generating digital audio.
○ Students will explore methods of programmatically altering and modifying digital audio by

adjusting volume, pitch, and sampling rate.
○ Students will explore the methods and effects of compression algorithms in reducing the

amount of data needed to represent an audio sample.

21

Unit 4 Highlighted Activities

Throughout this unit students complete activities where they are creating programs that implement
algorithms. Specifically, there is a program that is similar to “Mastermind” part way through the unit. In
this program students are developing an in-depth program that utilizes all of the coding skills they have
gained up until this point - selection, iteration, lists, functions, input, output, randomness, and more.
Throughout the process of creating their program, they are testing it using different inputs from the user
and seeing if they are getting the expected results. As part of their programming process, students are to
document their code to explain what each code segment will do in their program. [P4]

Unit Project [P1]
The Image Filter Project is an in-class, collaborative activity that occurs at the end of the unit. In this
Python programming project, students will use their text-based programming skills to develop a program
that manipulates digital images similarly to a filter in a photo app. Students will:

o design and implement a program for filtering digital images.
o develop code to systematically transform an image by mathematically manipulating its bits, pixel

by pixel.
o write documentation detailing the use of the program and its features using appropriate

terminology.
o explain the design and implementation choices by demonstrating and sharing the finished

programs with peers.

22

Create Performance Task

This section serves to fulfill the Performance Task requirements of the AP Computer Science Principles
exam. The Create Performance Task will account for 30% of the student's AP exam score. As such, the
work produced in this unit should reflect the sole work of the student and performed in-class with
minimal involvement from the classroom teacher. During this performance task, students will
demonstrate their ability to work collaboratively and individually to design and develop a functional
program for solving a problem and/or self-expression.

Create Performance Task Schedule

Topic Tasks

Create – Applications from
Ideas

12 hours of class time
required

Identify Project Ideas

Develop, Implement, and Test Program

Create Video of Program

Write Responses on Program

Submit “Create” Task Program, Video, and Written Responses

Create Performance Task Topics

Creative Development
○ Students will individually and/or collaboratively design, implement, and test a program designed

to solve a problem of interest to them.
○ Students will document the functionality of their program and reflect on its development

process.

Create – Applications from Ideas Performance Task
○ This project will encompass 12 hours of in-class, independent and/or collaborative work.
○ Each student will design, implement, and test a program that solves a problem of personal

interest to the student.
○ Each student will describe and reflect on their role in the development of the program.
○ Students will make a one-minute video demonstrating the use and functionality of the program.
○ Students may work collaboratively on their project, but each student will be solely responsible

for developing at least one significant part of their program.
○ The product of this project, including the program, video, and written responses, will serve as

part of the student's formal submission to the College Board for the AP Computer Science
Principles exam.

23

Unit 5: Big Data

One of the most powerful applications of computational thinking relates to the creation and analysis of
large datasets. In this unit, students will explore the complete set of processes and techniques that are
involved in collecting large volumes of raw data and extracting new and useful information. Students will
look at a variety of ways that data scientists use techniques such as statistical analysis, data mining,
clustering, classification, automated summarization, modeling and simulation to construct and visualize
new knowledge. And finally, using these techniques themselves, students will perform their own analysis
on a sample data set to discover new insights, which they will share with the class through a formal
presentation.

The final activity described above is the one major project in this unit: the TEDxKinda Project.

Unit 5 Schedule

Topic Lesson

Data Science Introduction to Big Data

Usability and Usefulness of Data

Data Aggregation Collection

Extraction

Data Storage and Persistence

Big Picture Wisdom of the Crowd

Data Breaches

Data Analysis Statistical Analysis

Data Mining

Models and
Simulations

Models and Simulations

Unit Project TEDxKinda Project

Supplemental
Data Analysis

Clustering

Anomaly Detection

Regression

Classification

Automatic Summarization

24

Unit 5 Topics

Data Science
○ Students will relate the impact of computing to ubiquitous and large-scale data processing.
○ Students will explore the ways that patterns within large data sets can be used in a predictive

manner.
○ Students will discuss the risks and benefits of drawing conclusions from patterns found in large

data sets.
○ Students will combine visuals, content knowledge, and interaction to create a dynamic

infographic that clearly communicates discrete information about a data set.
○ Students will identify the characteristics that differentiate usable data from unusable data.
○ Students will identify the characteristics that differentiate useful data from useless data.

Data Aggregation
○ Students will explore the purposes of various processing tasks, including collection, knowledge

extraction, and data storage.
○ Students will identify multiple techniques for data collection, both on and off of the Internet.
○ Students will analyze the characteristics of structured and unstructured data.
○ Students will extract structured information from unstructured data.
○ Students will examine methods of extracting information from online sources, including

structured and unstructured search engines, screen scrapers, and spiders.
○ Students will explore the basic features and functionality of modern relational databases.
○ Students will debate the implications of large-scale data storage and data persistence on privacy

and utility, including the costs associated with each.

Big Picture
○ Students will apply the technique of crowdsourcing to a novel data collection problem.
○ Students will examine the security risks and responsibilities assumed by companies that collect

and store sensitive personal data.
○ Students will examine the causes and impact of data breaches involving sensitive personal data.

Data Analysis (including Supplemental)
○ Students will analyze the tradeoff of utility and confidence in descriptive, predictive, and

prescriptive data analysis.
○ Students will investigate traditional statistical hypothesis testing and exploratory data analysis.
○ Students will investigate the use of data mining in the discovery of patterns in large data sets.
○ Students will examine the use of cluster analysis, anomaly detection, regression analysis, and

data classification in the processing of large data sets.
○ Students will use automatic summarization tools to create computer-generated summaries of a

large data set.

25

Models and Simulations
○ Students will use models and simulations to represent phenomena.
○ Students will explore how models may use different abstractions or levels of abstraction

depending on the objects or phenomena being posed.
○ Students will utilize models and simulations to formulate, refine, and test hypotheses.
○ Students will examine how simulations mimic real world events without the cost or danger of

building and testing the phenomena in the real world.

Unit 5 Highlighted Activities

Throughout the unit, students focus on big data and explore how it is collected, extracted, stored and
processed. Each step along the way students complete activities where they discover different
computational tools that can help them analyze and interpret their data - tools like Google trends and
correlate, Microsoft Excel, Wordle, HeatMapTool, Google Docs. Through these tools, students mine for
data and draw real conclusions.

Unit Project [P5]
The TEDxKinda Project is a collaborative activity in this unit. In this data analysis project, students will
work together to select and analyze a large data set, then develop a TED-style presentation to present
the implications of that data. Students will:

o collaborate in groups to analyze public data sets and extract insightful information and new
knowledge using a number of big data analysis techniques and tools.

o evaluate and justify the appropriateness of the chosen data set(s).
o construct informative and aesthetically pleasing data visualizations.
o write a script and prepare speaker notes for a formal presentation of the findings.
o cite all online and print sources used in the research and presentation preparation.
o deliver a TED-style presentation discussing the data analysis and findings using appropriate

terminology.

26

Unit 6: Innovative Technologies

This unit aims to broaden students' awareness of the computing tools they use and rely on every day and
to encourage them to start thinking about the decisions and processes that go into the creation of these
technologies. Students will begin by exploring many of the key roles that technology plays in their lives,
including social networking, online communication, search, commerce, and news, examining the ways
these ever-evolving technologies have impacted individuals and societies in recent years. With so many
of these technologies relying on the Internet to connect users and data across varied and remote
locations, the students will then "take a peek under the hood" to examine the systems and protocols
that make up the global infrastructure of the Internet. Students also take a look at the past, present and
future of technology and imagine the role that new innovations might play in shaping their future.

There is one major project in this unit: the Exploring Computing Innovations Project.

Unit 6 Schedule

Topic Lesson

Big Picture Defining a Computing Innovation

Implications of
Computing

Global Impact

Impact of Internet Access

Cloud Computing

Big Picture The Digital Divide

The Internet Internet in Action

Communication Protocols

Internet Protocols

Cryptography Encryption

Big Picture Net Neutrality

Cybersecurity Cybersecurity

Interconnectedness
in Computing

World Wide Web

Distributed Computing

Internet of Things

Ethics of Autonomous Technology

Unit 6 Project Exploring Computing Innovations

27

Unit 6 Topics

Big Picture
○ Students will examine computing innovations and consider their impact on the economy, society,

culture and environment.
○ Students will investigate the socioeconomic causes and effects related to the digital divide.
○ Students will discuss the benefits and risks of open versus closed platforms.

Implications of Computing
○ Students will explore the ways that innovations in digital technology can impact the lives of

individuals and communities.
○ Students will analyze the role that digital technology plays in their everyday lives.
○ Students will analyze the role that digital technology plays in their social communications and

interactions.
○ Students will explore the impact that instant access to global search, news, and information has

had on individuals and communities.
○ Students will analyze the benefits and risks of cloud computing.

The Internet
○ Students will examine the overall design and architecture of the Internet.
○ Students will explore the role of servers, routers, gateways, and clients.
○ Students will examine the domain name system and its role in network routing.
○ Students will examine a number of standard network protocols, including IP, TCP, UDP, SMTP,

HTTP, and FTP.
○ Students will investigate the series of components and events that are involved in the

transmission of an email or SMS text over the network.
○ Students will investigate the series of components and events that are involved in the

transmission of an HTML request from a Web browser.

Cryptography
○ Students will identify the needs and applications of cryptography in our digital world.
○ Students will encode and decode messages using common cryptographic techniques.
○ Students will examine the mathematical foundation of cryptography.
○ Students will analyze the differences between symmetric (single-key) encryption and asymmetric

(public key) encryption.
○ Students will examine the features of open and closed platforms and consider the role

cryptography plays in systems security.

Cybersecurity
○ Students will examine a number of common threats to cybersecurity, including distributed denial

of service attacks (DDoS), phishing, viruses, and social engineering.
○ Students will identify the needs for robust cybersecurity.
○ Students will analyze the software, hardware, and human components of cybersecurity.
○ Students will analyze the function and effectiveness of common cybersecurity solutions,

including antivirus software and firewalls.

28

Interconnectedness in Computing
○ Students will investigate the origins and applications of the World Wide Web.
○ Students will analyze the impact of hyperlinked documents on how individuals find, acquire, and

learn new information.
○ Students will analyze the legal, social, and commercial impact that the World Wide Web has had

on society.
○ Students will examine the roles and applications of distributed computing.
○ Students will investigate and extrapolate from recent advances in computing to make predictions

about the capabilities of future technologies.
○ Students will analyze how future technologies might impact individuals and societies.
○ Students will examine the legal and ethical implications of autonomous technology.

Unit 6 Highlighted Activities

In this unit students are asked to do a few different activities in regards to fault tolerance of the internet,
protocols used by the World Wide Web and routing, distributed, parallel and sequential computing. They
also complete activities where they define and identify computing innovations. In these activities,
students are asked a series of questions to prompt in depth analysis of the topics at hand:

○ In one specific activity, students are asked to look at a network of nodes and determine the path
in which packets might be routed based on specific protocols. Students then create their own
protocol to implement on the network. [CSN]

○ In another activity, students research different types of malware and discuss ways in which they
can be prevented, so as to be aware of how to be safe and secure when using computing
devices. [P6]

○ In another activity, students review an image and are asked if they see any computing
innovations. After going through the possible computing innovations in the image and why they
were considered as such (talking about data they use and / or programs being fundamental to
their function) then students are asked to brainstorm a list of their own computing innovations.
Not only do they list why these innovations are computing innovations, but they also explain
what the world would be like without it - how it impacts the society, economy or culture. [CI 2,
Prompt A]

○ In another activity, students review several computing innovations like search tools, wikis,
e-commerce, etc. and are asked to reflect on how the innovation inputs, transforms and outputs
data. They further explore and explain a beneficial or harmful effect that this innovation may
have on economy, society or culture. [CI 3, Prompts A and B]

Unit Project [IOC] [CI 1, Prompts A, B, and C]
This multi-day activity gives students a chance to deepen their understanding of computing innovations.
Students will research computing innovations and explore multiple aspects of them. Students will create
a computational artifact to display information they have learned as well as provide written responses to
prompts dealing with ideas like:

o the function and purpose of a computing innovation
o how the computing innovation was developed and created
o the beneficial and harmful effects the computing innovation may have had on society, economy

or culture
o how the innovation uses, consumes or transforms data
o how the innovation may have been used beyond the intended purpose

29

Unit 7: The AP Exam

This final unit provides preparation resources for all components of the AP exam. Students review the
design of the assessment and work through a practice multiple choice sequence taken from the College
Board’s AP Computer Science Principles Course & Exam Description document. Students also have access
to resources that support the completion and submission of the Performance Task requirements. As
students practice and prepare for the exam with this module and other past curricular content, they
should consider each of the five big ideas and six computational thinking practices central to this course.

