[image: Richmond County School System moves all schools to virtual learning]
Foundations of Computer Programming Curriculum Map – Elliott Neumeister, Murphey Middle School, 2023-08-07
Middle School Computer Science courses are 9 weeks long per the curriculum, but Murphey uses an A Day – B Day system. 
As a result, my estimated times assume a total course duration of 18 weeks.
	Grade Bands: 6-8
	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5

	Instructional Segment:
	Employability Skills and Typing
	Intro to Programming: Hedy Levels 1-10
	Intermediate Programming: Hedy Levels 11-16
	Practical Python with micro:bit
	Computer Components, Hardware, and Software

	Estimated Time:
	3 weeks and throughout the year
	4 weeks
	3 weeks
	4 weeks
	4 weeks

	Core Concepts/ Vocabulary:
	Etiquette – Practicing behaviors and speech patterns that are appropriate for business and other professional environments.

Time Management – strategies to meet deadlines, prioritize tasks, and avoid procrastination.

WPM – words per minute; a measure of typing speed.

	Code – a series of instructions that are executed by a computer to solve a problem or accomplish a task.

Variable – a letter or word that stands in for another value. Frequently used for storing and recalling data in programming.

List – an ordered set of related values that can be used to store and organize data.

Conditional – an if/then statement that allows programs to behave differently based on input.

	Algorithm – a procedure for solving a problem, like the steps in a recipe.

Loop – a statement that allows you to perform repetitive tasks without having to manually write each instance.

Comparison – a character like <, >, or == used to check if one value is less than, greater than, or equal to another value.

Python – a real-world programming language used by professionals in a variety of fields, from computer science to biology and physics.
	Microcontroller – a small, simple computer that can execute code written on a more complex machine.

Flashing – the process of writing new code to a device or microcontroller.

Output – the results of an executed program, which may take the form of lighting LEDs, emitting a sound, displaying text or images on a screen, etc.
	Hardware – physical devices that make up computers, like CPU, RAM, hard drive, monitor, mouse and keyboard.

Software – programs that run on hardware, like Windows, macOS, Microsoft Office, and Google Chrome.

Network – multiple computers connected together to exchange information, host websites, etc.

	GaDOE Standards:
	· MS-CS-FCP-1 Demonstrate employability skills required by business and industry.
· 1.1 Communicate effectively through writing, speaking, listening, reading, and interpersonal abilities.
· 1.2 Demonstrate creativity by asking challenging questions and applying innovative procedures and methods.
· 1.3 Exhibit critical thinking and problem-solving skills to locate, analyze and apply information in career planning and employment situations.
· 1.4 Model work readiness traits required for success in the workplace including integrity, honesty, accountability, punctuality, time management, and respect for diversity.
· 1.5 Apply the appropriate skill sets to be productive in a changing, technological, diverse workplace to be able to work independently and apply teamwork skills.
· 1.6 Present a professional image through appearance, behavior, and language.
· MS-CS-FCP-6 Create digital artifacts to address a current issue requiring resolution.
· 6.1 Summarize ethical, privacy, and legal issues of a digital world using current case studies.
· 6.2 Collaborate as a team to develop an artifact that represents multiple perspectives regarding a global crisis.
· 6.3 Analyze and explain the functionality and suitability (or appropriateness) of a computational artifact.
· 6.4 Develop a program for creative expression or to satisfy personal curiosity which may have visual, audible, and/or tactile results.
· 6.5 Develop a program specifically with the goal of solving a problem, creating new knowledge, or helping people, organizations, or society.
	· MS-CS-FCP-2 Explore and explain the basic components of computers and their relationships to programming.
· 2.3 Demonstrate an understanding of the fundamental concepts for how computers process programming commands (hex, binary language, sequence of commands, conditional structures, looping structures).
· MS-CS-FCP-3 Utilize computational thinking to solve problems.
· 3.1 Make observations and organize the concepts of modularity, including functions and methods, as it relates to programming code reusability and cloud computing in the software industry.
· 3.2 Develop a working vocabulary of computational thinking including sequences, algorithms, binary, pattern matching, decomposition, abstraction, parallelization, data, automation, data collection, data analysis, Boolean, integer, branches (if...then...else), and iteration {loops (For, While)}.
· 3.3 Analyze the problem-solving process, the input-process-output-storage model of a computer, and how computers help humans solve problems.
· 3.4 Develop an algorithm to decompose a problem of a daily task.
	· MS-CS-FCP-3 Utilize computational thinking to solve problems.
· 3.1 Make observations and organize the concepts of modularity, including functions and methods, as it relates to programming code reusability and cloud computing in the software industry.
· 3.2 Develop a working vocabulary of computational thinking including sequences, algorithms, binary, pattern matching, decomposition, abstraction, parallelization, data, automation, data collection, data analysis, Boolean, integer, branches (if...then...else), and iteration {loops (For, While)}.
· 3.3 Analyze the problem-solving process, the input-process-output-storage model of a computer, and how computers help humans solve problems.
· 3.4 Develop an algorithm to decompose a problem of a daily task.
· MS-CS-FCP-4 Design, develop, debug and implement computer programs.
· 4.1 Develop a working vocabulary of programming including flowcharting and/or storyboarding, coding, debugging, user interfaces, usability, variables, lists, loops, conditionals, programming language, and events.
· 4.2 Utilize the design process to brainstorm, implement, test, and revise an idea.
· 4.3 Cite evidence on how computers represent data and media (sounds, images, video, etc.).
· 4.4 Design a user interface and test with other users using a paper prototype.
· 4.5 Implement a simple algorithm in a computer program.
· 4.6 Develop an event driven program.
· 4.7 Create a program that accepts user and/or sensor input and stores the result in a variable.
· 4.8 Create a computer program that implements a loop.
· 4.9 Develop a program that makes a decision based on data or user input.
· 4.10 Debug a program with an error.
	· MS-CS-FCP-5 Explore the relationship between computer hardware and software.
· 5.2 Investigate how software interacts with hardware in the boot process.
· 5.3 Analyze and explain how computers communicate information with simple hardware inputs and outputs.
· 5.4 Create a product that analyzes how simple computer hardware can be used to develop innovative new products that interact with the physical world.
· 5.5 Design a computer program that senses something in the real world and changes an output based on the input.
· MS-CS-FCP-6 Create digital artifacts to address a current issue requiring resolution.
· 6.1 Summarize ethical, privacy, and legal issues of a digital world using current case studies.
· 6.2 Collaborate as a team to develop an artifact that represents multiple perspectives regarding a global crisis.
· 6.3 Analyze and explain the functionality and suitability (or appropriateness) of a computational artifact.
· 6.4 Develop a program for creative expression or to satisfy personal curiosity which may have visual, audible, and/or tactile results.
· 6.5 Develop a program specifically with the goal of solving a problem, creating new knowledge, or helping people, organizations, or society.
	· MS-CS-FCP-2 Explore and explain the basic components of computers and their relationships to programming.
· 2.1 Identify the basic components of the computer (processor, operating system, memory, storage, ethernet ports) by disassembling and reassembling a demonstration model personal computer (may be done ‘virtually’ online if demo model is not available).
· 2.2 Demonstrate an understanding of key functional components (input/output devices, software applications, wi-fi and/or Ethernet, and IP addresses).
· 2.3 Demonstrate an understanding of the fundamental concepts for how computers process programming commands (hex, binary language, sequence of commands, conditional structures, looping structures).
· MS-CS-FCP-5 Explore the relationship between computer hardware and software.
· 5.1 Develop a working vocabulary of embedded computing including digital, analog, events, microcontrollers, sensors, light emitting diodes (LED), switches, servos, cloud computing, and internet of things.
· 5.2 Investigate how software interacts with hardware in the boot process.
· 5.3 Analyze and explain how computers communicate information with simple hardware inputs and outputs.
· 5.4 Create a product that analyzes how simple computer hardware can be used to develop innovative new products that interact with the physical world.
· 5.5 Design a computer program that senses something in the real world and changes an output based on the input.



image1.jpeg
l 3
County School System




